

Study on Handling Dark Data in HPCI Shared Storage System using the WHEEL Workflow Tool

International Data Week 25/SciDataCon 25

Data and Research & Data Science and Data Analysis

October 13, 2025

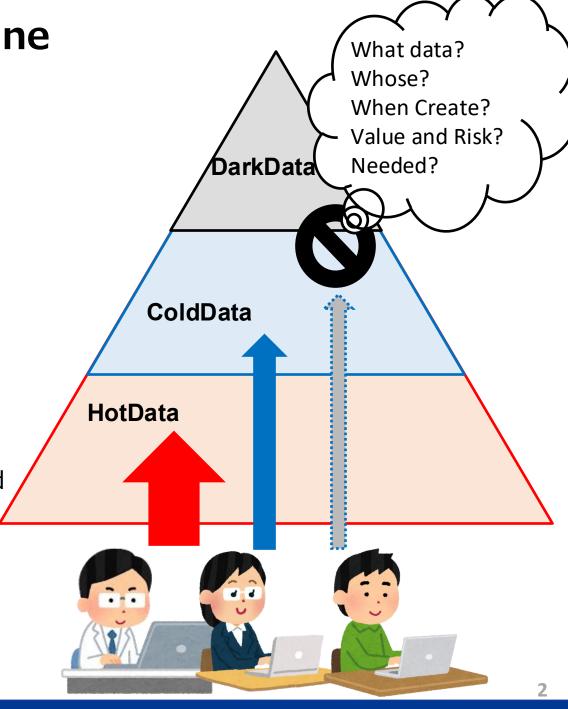
- Hidetomo Kaneyama
- Tomohiro Kawanabe
- Hiroshi Harada

Outline

We operates the HPCI Shared Storage Service.

Issues:

 Dark Data blocking "effective use" of storage, causes storage pressure.


 Dark data: data unused for analysis/decision-making, with unclear value or risk. And, significant dark data exists in HPCI Shared Storage.

 https://www.gartner.com/en/informationtechnology/glossary/dark-data

Approach:

 Add new functions to the workflow tool for HPC and supercomputers.

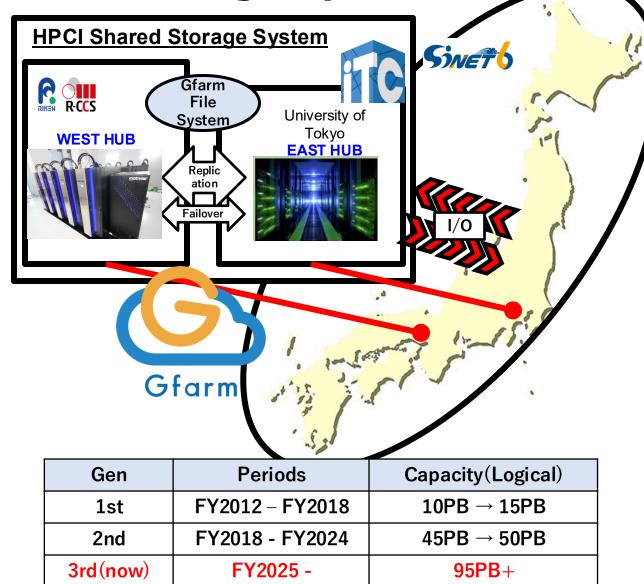
- Automatically collect extended metadata from HPC/supercomputing systems
- Write data to our storage with the extended metadata attached

What is HPCI Shared Storage System?

HPCI-SS(HPCI Shared Storage) System for Preserving and Sharing Data from Japanese Supercomputers.

Objectives

- Data sharing between supercomputers (computational resources)
- Long-term preservation of research data
- Public dissemination of research data (utilization of open/public datasets)


Core Software

• Gfarm File System
https://github.com/oss-tsukuba/gfarm

Key Features

- It is provided free of charge to research projects using Japan's HPC systems.
- Parallel data I/O transfer from HPCI resources
- Disaster recovery through inter-site data replication
- High availability (operational uptime >99%, downtime/unavailability <1%)
- High-performance network storage capable of transfers exceeding 200 Gbps

https://www.hpci-office.jp/info/pages/viewpage.action?pageId=111380786

Cold Data in HPCI-SS

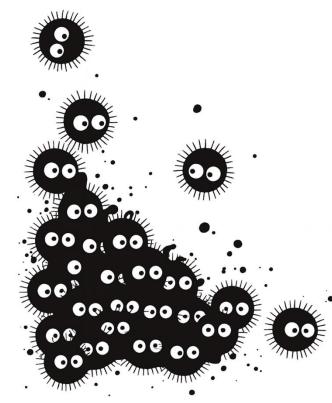
Number of Files

****Cold data is 'File not Accessed in over ONE YEAR'**

Total	Capacity	33PB
	Number of files	188 million
Cold data ratio (include Dark data)	Capacity	90.2%
	Number of files	88.8 %

Capacity

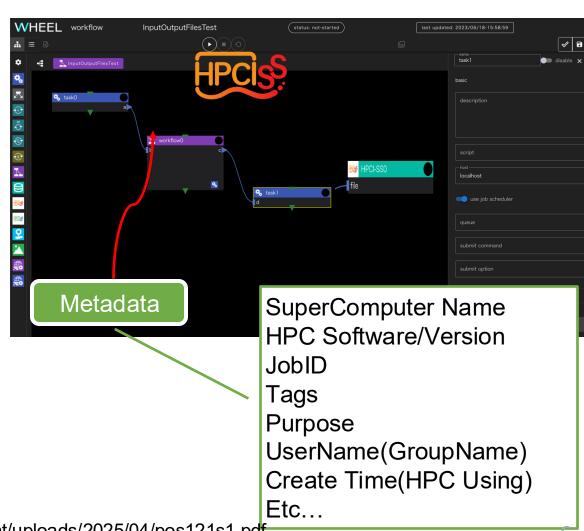
Cold data grow in HPCI Shared Storage.


- Users face heavy burden in identifying unnecessary files
- Some data has been inherited (e.g., from former members)
- Lack of metadata makes deletion decisions difficult

Issue of Data Management in HPCI-SS

The HPCI Shared Storage Service needs to provide function of "automatic extended metadata annotation" tie-up HPC/Supercomputers.

- ISSUE[1]: How to approach to Cold/Dark Data?
 - Ask users to remove old and unused data
 - Dark data is hard to judge due to unclear content
 - Actual stored of dark data remains unknown (only discovered when users clean up)
 - Visualization provides usage/capacity/file counts, but not data content or usefulness
- ISSUE[2]: How to challenge open-science and AI?
 - AI/Open Science requires labels and metadata
 - Current HPC & HPCI storage lacks tagging/labeling mechanisms
 - Object storage often missing or underutilized
 - Critical info ("who used what, and how data was obtained") is not preserved
 - Some users keep records manually (e.g., Excel) \rightarrow high management burden


Approach

Our Approach

- User Side
- Seek improvements without direct system modifications
- Collaborate with WHEEL workflow tool
- Automatically collect extended metadata during workflow execution
 - HPC Name
 - Project Name
 - JobID
 - Pre/PostName
 - UserName
 - Software Name
- Store enriched metadata + datasets into HPCI-SS
- Long-term goal: integrate with DOI assignment

Progress

- FY2024: Enabled WHEEL I/O to HPCI-SS via Gfarm API
- FY2025: Developing automated metadata collection during HPC compute & pre/post-processing

Discussion to Dark Data in HPCI-SS

■ Why use Workflow Tools?

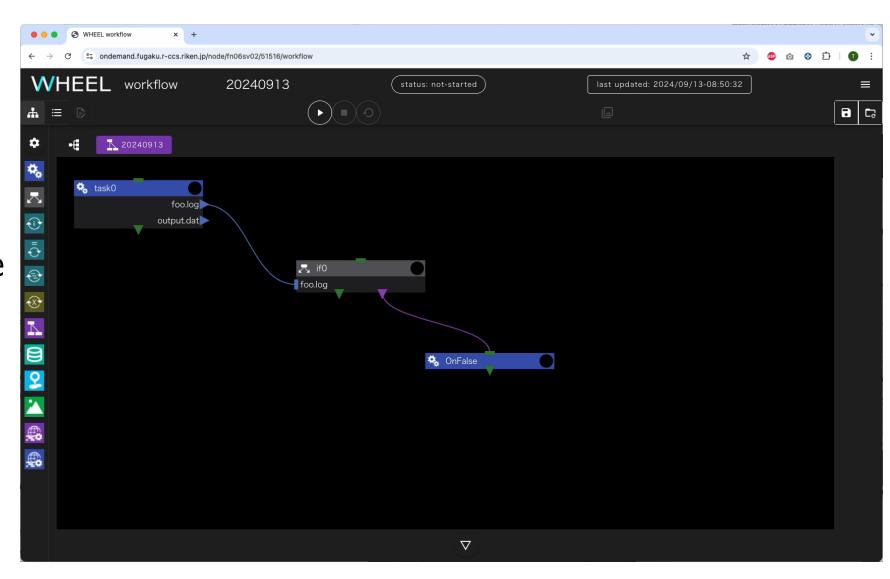
Low Cost:

- Replacing entire AI or Metadata controls storage(e.g. VAST) is too expensive. (We need more capacity)
- Commercial metadata products (e.g. Starfish, IBM AFM System)
 - Management authority at each supercomputer sites.
 - High license and operational costs.

External Factor:

- Data management need to starts at the point of data generation(Computation to used HPC/Supercomputers).
- HPC storage (e.g., Lustre, BeeGFS) is fast, but nothing expanded metadata functions.
- Implement metadata management on "User side = Workflow side".

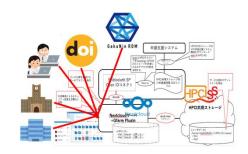
■ What does this solve?

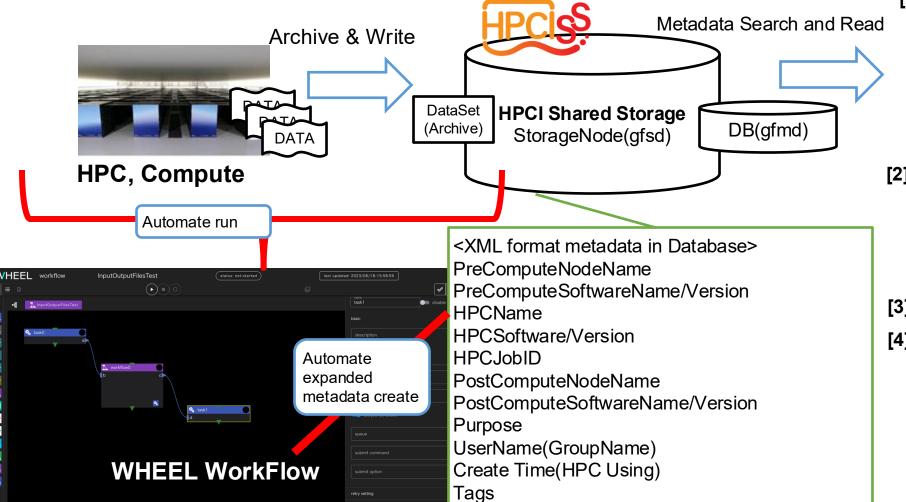

- Automatically collects expanded metadata during HPC/Supercomputer computations.
- Independent of supercomputer site storage systems.
- Manage of expanded metadata per data or dataset (supports compressed and archived data).
- Metadata-based search available in HPCI-SS.
- Dark Data can be identified by automatically adding and saving metadata extracted from the workflow information.

WHEEL: A Web-based Workflow tool

- A web-based GUI workflow build and execution tool
- JavaScript application using Node.js
- Open-source software distributed under the BSD-2 license

Method And Future Challenges


[2] Visualization of Expanded Metadata



[3]Collaboration to DOI

[4] Connect to/for RDM or Open Science Service

etc...

Keyword & Reference

■ Keywords

- Dark Data
 - https://www.gartner.com/en/information-technology/glossary/dark-data
- HPCI Shared Storage HPCISS
 - https://www.hpci-office.jp/info/pages/viewpage.action?pageId=111380786
- Gfarm File System
 - https://github.com/oss-tsukuba/gfarm

WHEEL Workflow Tools

https://github.com/RIKEN-RCCS/OPEN-WHEEL

■ References

- [1] Tatebe, O., et al. (2010). Gfarm grid file system. New Generation Computing, 28(3), 257–275. https://dl.acm.org/doi/10.1007/s00354-009-0089-5
- [2] Bauer, D., et al. (2022). Revisiting data lakes: The metadata lake. In Proceedings of the 23rd International Middleware Conference Industrial Track (pp. 8–14). ACM. https://doi.org/10.1145/3564695.3564773
- [3] Kawanabe, T., et al. (2024). Introduction of WHEEL: An analysis workflow tool for industrial users and its use case on supercomputer Fugaku. In Proceedings of the 2024 IEEE International Conference on Cluster Computing Workshops (pp. 180–181). IEEE. https://www.computer.org/csdl/proceedings-article/cluster-workshops/2024/834500a180/21EtRZFluLu
- [4] Jain, A., et al. (2015). FireWorks: A dynamic workflow system designed for high-throughput applications. Computational Materials Science, 96, 118–124. https://doi.org/10.1016/j.commatsci.2014.10.037
- [5] Chiapparino, G., et al. (2024). From ontology to metadata: A crawler for script-based workflows. INGGRid. https://www.inggrid.org/article/3983/galley/3912/download/

