

Study on Handling Dark Data in HPCI Shared Storage System using the WHEEL Workflow Tool

International Data Week 2025
Data and Research & Data Science and Data Analysis
2025/10/13

RIKEN R-CCS

- Hidetomo Kaneyama
- Tomohiro Kawanabe
- Hiroshi Harada

Outline

- RIKEN operates the HPCI Shared Storage, providing free storage for HPC/supercomputing research data in Japan.
- Currently storing "35+ PB" and "200M+ research files".
- Many files have not been accessed for over a year and are now considered "cold data.
- Dark data: data unused for analysis/decision-making, with unclear value or risk. And, significant dark data exists in HPCI Shared Storage.
 - https://www.gartner.com/en/information-technology/glossary/dark-data

- Dark Data blocking "effective use" of storage, causes storage pressure.
- Our approach:
 - Extend WHEEL workflow tools for HPC/supercomputers.
 - Automatically capture information and automatically add extended metadata to HPC datasets
 - Data and extended metadata is stored in HPCI shared storage.

What is HPCI-SS System?

HPSS(HPCI Shared Storage) System for Preserving and Sharing Data from Japanese Supercomputers.

Objectives

- Data sharing between supercomputers (computational resources)
- Long-term preservation of research data
- Public dissemination of research data (utilization of open/public datasets)

Core Software

Gfarm File System
 https://github.com/oss-tsukuba/gfarm

Key Features

- Parallel data I/O transfer from HPCI resources
- Disaster recovery through inter-site data replication
- High availability (operational uptime >99%, downtime/unavailability <1%)
- High-performance network storage capable of transfers exceeding 200 Gbps

https://www.hpci-office.jp/info/pages/viewpage.action?pageId=111380786

FY2025 -

3rd(now)

95PB+

Cold Data in HPCI-SS

Number of Files

****Cold data is 'File not Accessed in over ONE YEAR'**

Total	Capacity	33PB
	Number of files	188 million
Cold data ratio	Capacity	90.2%
(include Dark data)	Number of files	88.8 %

Capacity

Cold data grow in HPCI Shared Storage.

- Users face heavy burden in identifying unnecessary files
- Some data has been inherited (e.g., from former members)
- Lack of metadata makes deletion decisions difficult

Discussion and Approach to Dark Data in HPCI-SS

CJK Project(A3)

Operational Concerns

→ Need to provide environments for extended metadata attachment / methods for automatic enrichment

[1] Approach to Cold Data

- Ask users to delete very old, unused data
- Dark data is harder: unidentified data, high user burden to judge deletion
- Actual volume of dark data remains unknown (only discovered when users clean up)
- Visualization provides usage/capacity/file counts, but not data content or usefulness

[2] Challenges for AI & Open Science

- AI/Open Science requires labels and metadata
- Current HPC & HPCI storage lacks tagging/labeling mechanisms
- Object storage often missing or underutilized
- Critical info ("who used what, and how data was obtained") is not preserved
- Some users keep records manually (e.g., Excel) → high management burden

Discussion and Approach to Dark Data in HPCI-SS

• Why Workflow Tools?

- Data in HPCI-SS is mainly generated on external HPC/supercomputers
- Data management starts at the point of generation
- HPC storage (e.g., Lustre, BeeGFS) is fast but lacks metadata functions
- Replacing entire storage systems is too costly
- Commercial metadata products (e.g., Starfish, IBM AFM) require:
 - Management authority at each site
 - High license and operational costs
- → Implement metadata management on the workflow side

• What does this solve?

- Automatically collect information during computation, pre-/post-processing
- Associate extended metadata with datasets
- Compress and register datasets in HPCI-SS as manageable units
- Enable metadata-based search and management in HPCI-SS (via Gfarm)

Overview of WHEEL

- A web-based GUI workflow build and execution tool
- JavaScript application using Node.js
- Open-source software distributed under the BSD-2 license
 - https://github.com/RIKEN-RCCS/OPEN-WHEEL

Method

[A] Automatic extended metadata in HPC environments

- Adding functions to job schedulers or HPC storage (e.g., Lustre) is outside our authority
- Commercial tools (e.g., Starfish) involve high licensing/operational costs

 → Requires discussion at HPCI-wide level

[B] Management software on HPCI-SS side

- 3rd-generation system already designed (capacity-first policy)
- High cost, difficult to shift to products like VAST Catalog / IBM AFM

Our Approach

- Seek improvements without direct system modifications
- Collaborate with WHEEL workflow tool (R-CCS, Senior Engineer Kawanabe)
- Automatically collect extended metadata during workflow execution
- Store enriched metadata + datasets into HPCI-SS (Gfarm)
- Long-term goal: integrate with DOI assignment

Progress

- FY2024: Enabled WHEEL I/O to HPCI-SS via Gfarm API
- FY2025: Developing automated metadata collection during HPC compute & pre/postprocessing

Etc...

https://sca25.sc-asia.org/wp-content/uploads/2025/04/pos121s1.pdf

Next Work

- [2] Visualization of Expanded Metadata
- [3]Collaboration to DOI
- [4] Connect to/for RDM or Open Sience S

SCA/HPCAsia 2026: Call for Submissions

Event Overview:

Date: January 26-29, 2026

Venue: Osaka International Convention Center (Osaka, Japan)

Theme: "Everything with HPC –AI, Cloud, QC, and Future Society"

• Call for Submissions: Papers, Posters, Workshops, BoFs, and Tutorials

Papers	Posters	Workshops	Birds of a Feather	Tutorials
Paper abstracts:	Submissions close:	Submissions close:	Submissions close:	Submissions close:
29 Aug 2025	27 Oct 2025	30 Jun 2025	1 Sep 2025	11 Jul 2025
Submissions close:	Result notification:	Result notification:	Result notification:	Result notification:
5 Sep 2025	14 Nov 2025	31 Jul 2025	1 Oct 2025	15 Aug 2025
Result notification:				
20 Oct 2025				

For more details, please visit our website:

https://www.sca-hpcasia2026.jp/

