PRIVACY ENHANCING AI-BASED WHOLE SLIDE IMAGE ANALYSIS

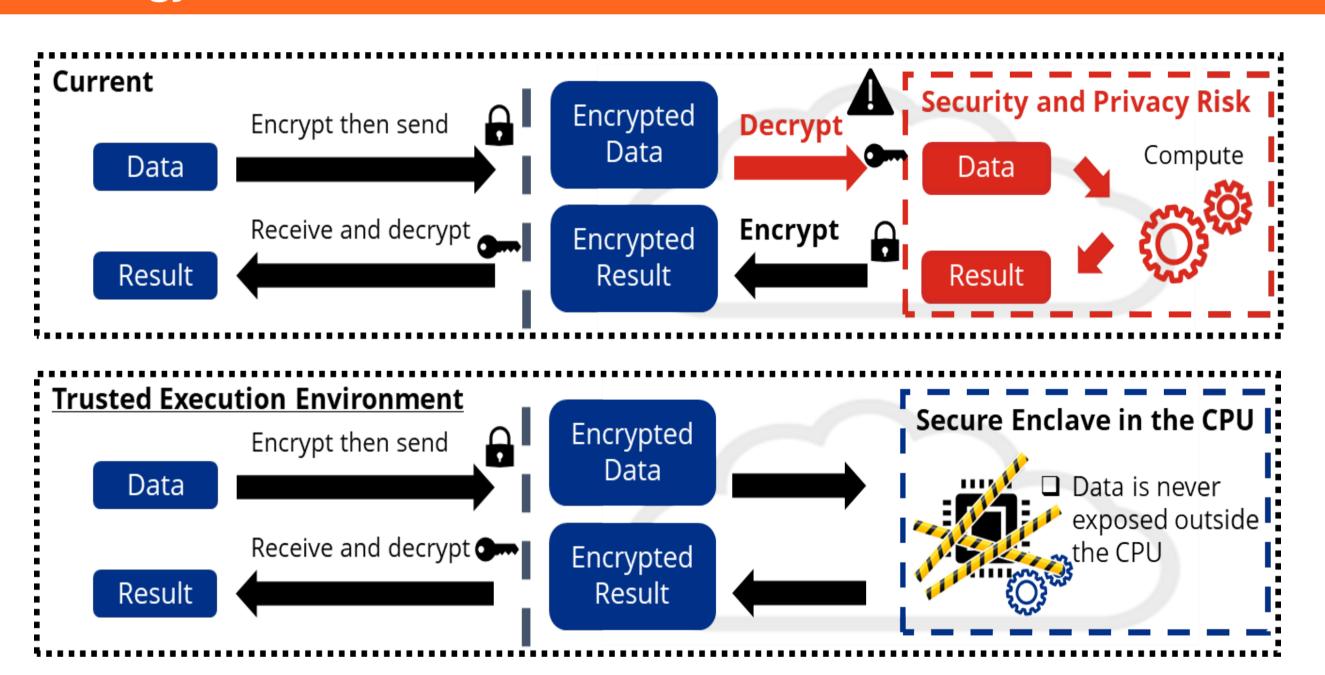
Rodel Felipe Miguel¹, Benjamin Hong Meng Tan¹, Jin Chao¹, Deng Xiaoxia¹, Chan Fook Mun¹, Khin Mi Mi Aung¹, Khor Li Yan², Heng Seow Ye², Dr. Cheng Chee Leong²

Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A*STAR), Singapore

² Singapore General Hospital Pte. Ltd.

Abstract

Digital pathology begins when a thin section of human tissue is mounted on a glass slide and scanned into a Whole-Slide Image (WSI) – typically 80,000 x 60,000 pixels and a size of 500MB to 5GB even in compressed form. WSIs drive state-of-the-art computational pathology, but hospitals typically restrict their analysis to isolated, air-gapped workstations because these gigapixel slides contain highly sensitive patient data. On such systems the workflow for a single case is onerous:


- Technicians copy the multi-gigabyte WSI to a removable medium and walk it to the secure workstation
- The slide is partitioned into patches (≈7 min)
- iii. Deep-learning inference (≈20 min)

With sequential processing and manual hand-offs, throughput stalls well **below the 50 cases per** day target for routine diagnostics.

We present a privacy-preserving, cloud-enabled pipeline that removes the physical-transfer bottleneck while maintaining strict confidentiality guarantees. The solution hinges on hardwarebased trusted execution environments (TEEs): TEE Encryptor (on-premises) and TEE Analyzer (cloud).

Because computation now runs on elastic cloud hardware, multiple TEE Analyzer instances can be launched in parallel. A deployment with ten enclaves cuts effective turnaround to minutes per case and comfortably exceeds the 50-case-per-day target, all without exposing WSIs or predictions in plaintext to the cloud operator. This solution offers order-of-magnitude improvements in digital-pathology throughput while preserving patient privacy.

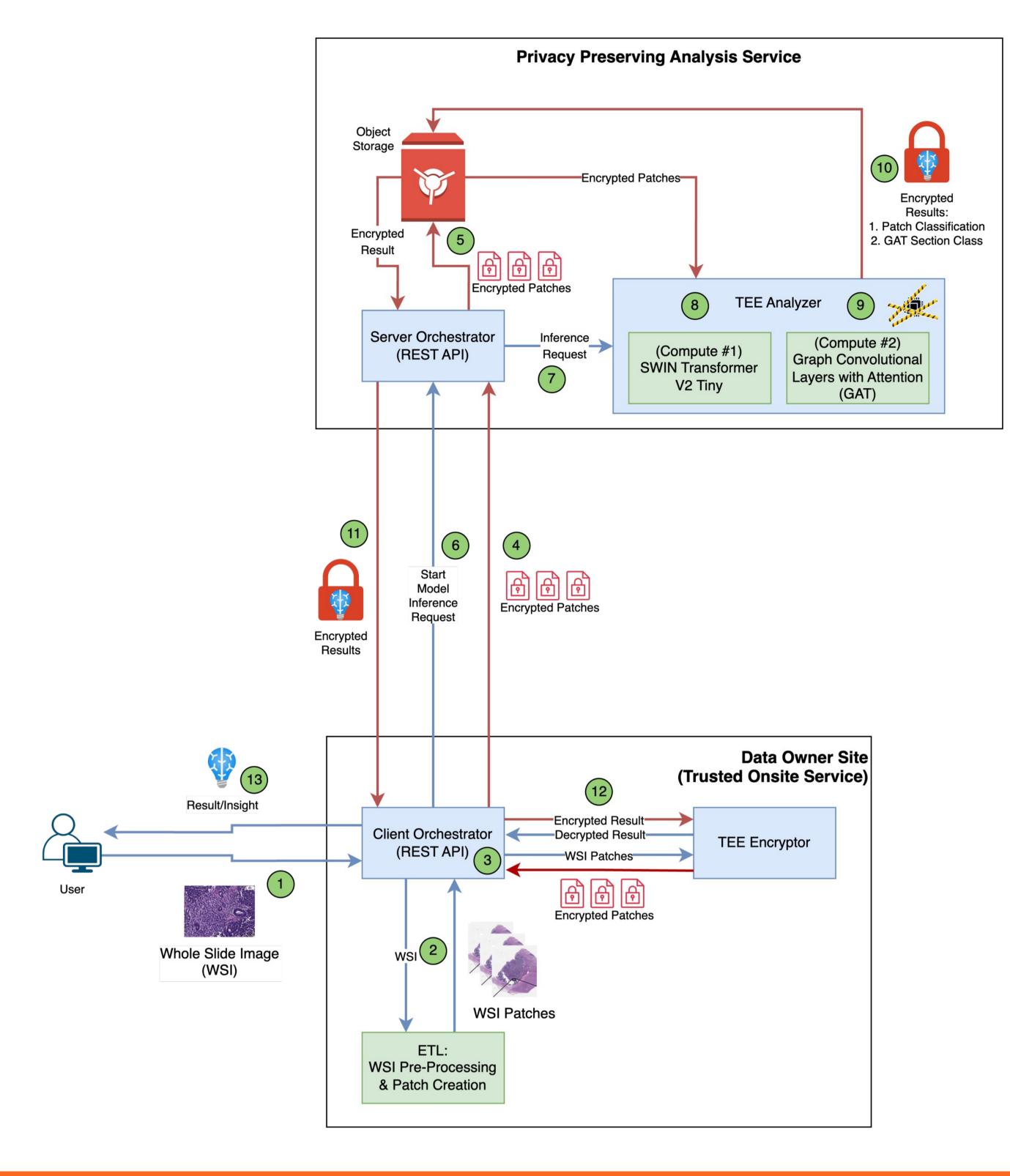
Technology Features

- **Trusted Execution Environment (TEE)** [AMD SeV-SNP/Intel TDX]: A hardware-isolated, memory-encrypted VM in the cloud. Only code loaded with the correct cryptographic "measurement" can run; the cloud provider cannot peek inside.
- TEE Encryptor (Inside the Hospital Firewall): After verifying a remote enclave's attestation, it establishes an ephemeral (temporary) session key, preprocesses each WSI locally, slices it into patches, encrypts the patches with the session key, and transmits them over TLS.
- **TEE Analyzer (In the Cloud):** Hosted in an AMD SEV or Intel TDX enclave, it decrypts patches only inside protected memory, executes the two-stage deep-learning cascade, re-encrypts results with the same session key, and stores all artefacts in an object store accessible solely within the private analysis service. Encrypted results return to the hospital and are decrypted by the TEE Encryptor.
- WSI Inference: A 2-stage model inference that runs inside the TEE Analyzer. This 2level inference comprises of patch-level classification (SWIN-v2 Transformer) and WSI-level aggregation (Graph Attention Network). The inference mimics a pathologist's holistic view while keep computations private.

Setup 1x Encryptor VM: Ubuntu 22.04 LTS, 64 GB RAM Analyzer Host: 2x AMD EPYC 9554 processor, 256 GB Memory, Ubuntu 25.04 5x Analyzer VM: Ubuntu 25.04, 32 GB RAM, 16 CPU threads WSI: 5x 1.5GB TIFF file

Step 1 - Data Preparation Location: Encryptor VM

Process: Convert WSI into patches, encrypt, and sent to Analyzer for inference WSI Conversion Time: 4 min 21 sec **Encrypt and Submit Time: 23 sec** Memory: 11 GB


CPU Threads: 10

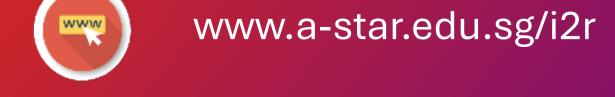
Step 2 – WSI Inference

Location: Analyzer VMs **Process:** 5x 2-stage inference tasks in 5 AMD SeV-SNP TEE VMs Total Runtime of 5 Tasks: 17m 57s Average Runtime of 5 Tasks: 16m 50s Memory per VM: 32 GB **CPU Threads per VM: 16** Cost per Inference in GCP: \$0.214

Architecture and Workflow

Components:

Data Owner Site


- WSI Pre-processing & Patch Creation **TEE Encryptor** (responsible for encrypting patches and decrypting final results)
- Client Orchestrator (handles API calls to the server side, coordinates tasks)
- 2. Privacy Preserving Analysis Service
 - Server Orchestrator (manages job scheduling, routes data)
 - Secure Object Storage (stores encrypted 4. patches/results, accessible only within this service)
 - **TEE Analyzer** (runs on AMD SEV/Intel TDX **5.** nodes, handles patch-level CNN and GAT classification in encrypted form)
- 3. Attestation Service (AMD or Intel Service)
 - Verifies the integrity/measurement of the TEE Analyzer
 - Facilitates session key establishment

Data Flow Summary:

- 1. WSI is **pre-processed** on-prem (removing artifacts, creating patches).
- 2. Patches are encrypted with a session key, established after attestation.
- 3. Encrypted patches are stored in secure object storage in the Privacy Preserving Analysis Service.
- The **TEE Analyzer** fetches and **decrypts** patches in-enclave, runs inference.
- **Results** are encrypted again, placed back in **object storage**.
- 6. The **Data Owner** retrieves **encrypted** results and uses the TEE Encryptor onprem to **decrypt** them.

Acknowledgements

- This research is supported by the **National Research Foundation**, **Singapore** and Infocomm Media Development Authority under its Trust Tech Funding Initiative (DTC-**RGC-01)**. Any opinions, findings, and conclusions or recommendations ex-pressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore and Infocomm Media Development Authority.
- This work was carried out in close partnership with Singapore General Hospital Pte. Ltd., whose collaboration and clinical insights were essential to the success of this research.
- This research/project is supported by the National Research Foundation, Singapore under its Al Singapore 100 Experiments Programme (AISG Award No: AISG2-100E-2023-108). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.

For more information or collaboration opportunities, please contact:

facebook.com/i2r.research/